Performance Mix Design: What Have We Learned?

Stacey Diefenderfer, Ph.D., P.E.
December 6, 2018
What is Performance Mix Design?

• Designing mixes using performance tests on appropriately conditioned specimens to address multiple modes of distress taking into consideration mix aging, traffic, climate and location within the pavement structure.

– from FHWA Balanced Mix Design Task Force
What is PMD – Practically?

• Designing mixtures to meet performance criteria:
 – Rutting
 – Cracking
 – Durability

• Ultimately involves using volumetrics as a tool, rather than a requirement
Design Approaches

• Volumetric Design w/ Performance Verification
 – Superpave design approach
 – Verify performance properties
 • If do not meet performance, re-design the mix

• Performance-Modified Volumetric Design
 – Use Superpave approach to select initial design binder content
 – Performance test results could modify mixture proportions and/or adjust the binder content
 – Final volumetric properties may be allowed to fall outside volumetric spec
Design Approaches

• Performance Design
 – Run performance tests at varying binder contents and select the design binder content from results
 – Volumetrics determined afterward and reported
 – No spec requirements on volumetrics
Performance Testing

• Cracking test
 – IFIT/SCB, Overlay test, Nflex, IDEAL-CT

• Rutting
 – APA, Hamburg

• Other
 – Cantabro - durability
 – Volumetrics
 – Binder grading
PMD – Phase I

• Framework / specification development
 – Benchmarking / shadow testing
 • Un-reheated & reheated materials, cores
 – Design optimization
 • Use performance testing to optimize mix designs
 – Field trials
 • Production experience
Benchmark Testing

- Plant-made specimens – un-reheated
 - Ideal-CT, APA, Cantabro
- Sampling for reheated specimens
 - Volumetrics, Cantabro
 - Ideal-CT, Nflex, IFIT/SCB, Overlay Test
 - APA, Hamburg
- Coring
 - Ideal-CT, APA
Mix Sampling

• VTRC projects
 – On-site compaction
 • Cantabro, Ideal-CT, APA rutting
 – Loose mix collection (14 boxes)
 • Volumetrics, binder extraction and grading
 • Cantabro, Ideal-CT, APA rutting
 • Nflex, IFIT, Overlay Test, Dynamic modulus
 – Coring (12 cores)
 • Ideal-CT, APA rutting, IFIT
Mix Sampling

• Producer volunteers
 – Plant compacted specimens
 • Cantabro, Ideal-CT, APA rutting
 – Loose mix collection
 • 4-5 *full* boxes, ~150lb
 • Cantabro, Ideal-CT, APA rutting
Current Sampling

• 6 VTRC-sampled mixtures
 – 3 SM-9.5 mixes
 – 3 SM-12.5 mixes
 – 4 Districts

• 6 Producer-sampled mixtures
 – 4 SM-9.5 mixes
 – 2 SM-12.5 mixes
 – 4 Districts
APA Rutting

![APA Rutting Chart]

Average Rut Depth, mm

- **Plant - Producer**
- **Reheat**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.0</td>
<td>6.9</td>
<td>6.7</td>
<td>7.4</td>
<td>7.3</td>
<td>6.7</td>
</tr>
<tr>
<td>2</td>
<td>6.9</td>
<td>6.0</td>
<td>6.4</td>
<td>7.2</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>3</td>
<td>6.7</td>
<td>6.4</td>
<td>7.4</td>
<td>7.2</td>
<td>7.3</td>
<td>6.2</td>
</tr>
<tr>
<td>4</td>
<td>6.0</td>
<td>6.4</td>
<td>6.7</td>
<td>6.2</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>5</td>
<td>7.2</td>
<td>7.2</td>
<td>7.4</td>
<td>7.2</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>6</td>
<td>6.7</td>
<td>6.2</td>
<td>7.3</td>
<td>7.2</td>
<td>6.2</td>
<td>6.2</td>
</tr>
</tbody>
</table>
What Have We Learned?

• Specimen fabrication
 – Consistently meeting target voids is difficult
 – Mass–void relationship is lacking

• Differences due to reheating
 – Binder absorption?
 – Aging?

• Test sensitivity to voids, mix properties
 – Not clear
Next Steps

• Continue analyses
 – Volumetric relationships
 – Improved estimates for mass/voids
 – Comparisons among tests

• Design optimization
 – Collaboration during design
 – What design choices impact performance

• Production trials
Thank you!

For more information:
stacey.diefenderfer@vdot.virginia.gov