High Recycled Content Asphalt Mixtures – *Pilot Program*

Benjamin F. Bowers, Ph.D., P.E.
Stacey Diefenderfer, Ph.D., P.E.
2018 Asphalt Seminar
Why Use RAP?

- Interest in recycling/reclaiming materials
 - Cost reduction
 - Industry factors
 - Environmental impacts

- Goals
 - Encourage material recycling/reclaiming
 - Encourage cost reduction measures
 - Ensure quality materials & performance
Evolution of Surface/Intermediate RAP Use by VDOT

- **1979**: Initial use of RAP
- **1980-1981**: Follow-on projects
- **1984**: Specification
 - 25% RAP
- **1997**: Superpave design adopted
 - 20% RAP
- **2007-2008**: Special Provision \rightarrow Specification
 - 30% RAP
- **2013-2014**: Trial projects
 - 40%, 45% RAP

\rightarrow 40-45% RAP
Why Higher RAP Contents?
High RAP Pilot Program

• Surface mixtures with 40%+ RAP content
 – Performance-designed
 – Rejuvenators?
• Volumetric acceptance, QC/QA
 – Still under discussion
• Performance testing during production
 – Assess changes during production vs. design
• Long-term performance evaluation
Specification Development

- Performance (Balanced) Mix Design framework
- Steps
 - Benchmark current mix performance properties
 - Set target performance parameters
 - Use parameters to evaluate designs
 - Adjust designs as needed
 - Assess changes in performance parameters during production/construction
 - Adjust at plant and/or site as needed
 - Long-term validation
Field Acceptance Processes

1. Volumetric
 - Volumetrics
 - Field Density

2. Volumetrics + Performance
 - Volumetrics
 - Field Density
 - Performance

3. Performance
 - Field Density
 - Performance

Note: "Performance" Tests may include fundamental tests and/or empirical tests.

Ranges from minimal (P_a only) to robust (P_b, P_a, VMA)

Discretionary Frequency And Actions

Required Frequency; Specified Actions

Graphic developed by Kevin Hall, 9/14/2017
Asphalt Pavement Analyzer

- Rutting test
- Test temperature of 64°C (baseline binder grade)
- Measure rut depth
- Tests ongoing…”
Cantabro Test

- Mix durability test
- Originally used for porous friction courses
- Measure mass loss
 - Less mass loss = increased durability
- Test protocol
 - 150 mm gyratory pill, height = 115 ± 5 mm
 - Compact to N_{design}
 - LA Abrasion device without spheres
 - 300 rotations at 30-33 rot/min
 - Calculate mass loss

- Testing complete
Cantabro Test Results

Average Mass Loss, %

A B C D E F G H I J K
Overlay Test

• Cracking test
• Cycles to failure
 – More cycles = less crack susceptible
• Test protocol
 – 150mm gyratory pill
 – Compact to 7.0% air voids
 – Cut faces and sides, 76 mm across, 38 mm height
 – Apply cyclic direct tension

• Testing complete
Overlay Test Results

- Mean
- NJ method (avg 4, remove high and low)
- TX method (avg 3, lowest COV)
Semi-circular Bend (I-FIT)

• Cracking test
• Measures a “Flexibility Index”
 – Higher index = less crack susceptible
• Test protocol
 – 150 mm gyratory pill, 50 ± 5 mm height
 – Compact to 7.0% air voids
 – Cut in half, notch in center
 – Marshall press or similar with data logger
 – Analyze load vs. displacement data

• Testing complete
Semi-circular Bend (I-FIT) Results

![Bar Chart]

- **Flexibility Index, FI**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
IDEAL-CT

• Cracking test
 • Provides a “Cracking Test index” (CTindex)
 – Higher index = less crack susceptible
 • Test protocol
 – 150mm gyratory pill, 62 ± 2 mm height
 – Compact to 7.0% air voids
 – No cut faces
 – Marshall press or similar with data logger
 – Analyze load vs. displacement data

• Testing ongoing
Nflex

- Cracking test
- Provides an “Nflex factor”
 - Higher factor = less crack susceptible
- Test protocol
 - Gyratory pill – diameter = 150 mm
 - Compacted to Ndesign
 - Cut faces to height = 50 ± 5.0 mm
 - Marshall press or similar with data logger
 - Analyze stress vs. strain data

- Testing ongoing
Next Steps

• Complete benchmark testing
 – Set target performance parameters for design
 – Determine acceptance criteria

• Site selection

• Mix design and analysis
 – Interactive with Contractor/VTRC

• Production & Construction
 – Testing
 – Acceptance
Thank you!

Ben Bowers
ben.bowers@vdot.virginia.gov

Stacey Diefenderfer
stacey.diefenderfer@vdot.virginia.gov