Research Update: High RAP

Stacey Diefenderfer, Ph.D., P.E.
Senior Research Scientist

Virginia Asphalt Association
Fall Asphalt Conference
October 7, 2014
% VDOT Tonnage Containing RAP

- 2009: 94.6%
- 2010: 95.5%
- 2011: 96.5%
- 2012: No Data
- 2013: 98.2%
Questions About RAP Use

• How does RAP content influence binder grade and mixture performance?
• Are RAP binders activated in mixtures?
• What binders should we use with various RAP contents for best performance?
• How much RAP can we use in a mixture?
Focus Areas

• In 2008, VDOT allowed up to 30% RAP in surface mixes
 – How well have these mixtures performed?

• Recent interest in higher RAP contents – up to 45% RAP
 – Can we design/produce/pave these mixtures?
 – How well will they perform?
Analysis: 20-30% RAP Mixtures

• Anecdotally, early mixtures appeared “dry”
 – RAP does not contribute as much binder as assumed
 – Recent spec changes have addressed this

• Need quantitative answer for performance
 – Visual surveys indicate trial sections performed similarly to controls
 – Performance test results under review
How Much RAP?

- Fredericksburg District, 6/2013
 - 20% (PG 70-22)
 - 30%, **40%**, **45%** (PG 64-22)

- City of Hampton, 8/2013
 - 30%, **40%** (PG 64-22)

- Fredericksburg District, 7/2014
 - **40%** (PG 58-28)

- Lynchburg District, 8/2014
 - 0% (PG 70-22)
 - 30%, **40%**, **45%** (PG 64-22)
Can High RAP Contents Work?

• Sometimes!
 – Depends on the RAP material, contractor, plant, project, etc.

• Issues
 – Can be difficult to produce
 • Plant setup and RAP handling capacity
 – Meeting current volumetric acceptance criteria
 • Controlling / measuring RAP properties
 • Addressing VMA, VFA, voids, and %AC

• Lab performance testing is interesting
• Proof will be in long-term performance
Addressing Challenges

30% RAP

45% RAP
Addressing Challenges
Extracted RAP Binder

<table>
<thead>
<tr>
<th>Sampling Date</th>
<th>6/12</th>
<th>6/13</th>
<th>6/14</th>
<th>6/17</th>
<th>6/18</th>
<th>6/19</th>
<th>6/25</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Failure Temp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G*/sin delta</td>
<td>86.1</td>
<td>85.3</td>
<td>89.3</td>
<td>87.6</td>
<td>88.5</td>
<td>89.0</td>
<td>88.5</td>
</tr>
<tr>
<td>Intermediate Failure Temp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G* sin delta</td>
<td>29.8</td>
<td>28.6</td>
<td>33.6</td>
<td>30.5</td>
<td>32.0</td>
<td>32.9</td>
<td>32.0</td>
</tr>
<tr>
<td>Low Failure Temp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stiffness</td>
<td>-9.5</td>
<td>-9.7</td>
<td>-7.5</td>
<td>-9.9</td>
<td>-8.3</td>
<td>-7.8</td>
<td>-8.6</td>
</tr>
<tr>
<td>m-value</td>
<td>-6.7</td>
<td>-6.4</td>
<td>-1.5</td>
<td>-6.7</td>
<td>-7.0</td>
<td>-6.6</td>
<td>-5.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance Grade</th>
<th>82-16</th>
<th>82-16</th>
<th>82-10</th>
<th>82-16</th>
<th>82-16</th>
<th>82-16</th>
<th>82-10</th>
</tr>
</thead>
</table>

Rt. 3 King George County, June 2013

• SM-12.5 mix designs
 – 20% RAP, PG 70-22, manufactured sand
 – 30% RAP, PG 64-22, manufactured sand
 – 30% RAP, PG 64-22, manf. & natural sand
 – 45% RAP, PG 64-22, manf. & natural sand

• 5th mixture – adjustment to 45% design
 – 40% RAP, PG 64-22, manf. & natural sand
Dynamic Modulus - onsite
Dynamic Modulus - reheat

![Graph showing dynamic modulus with different RAP PG 64-22 (MS&NS) reheat percentages]
Dynamic Modulus – 40% RAP
City of Hampton, August 2013

- 2 SM-9.5 mixtures
 - 30% RAP, PG 64-22
 - 40% RAP, PG 64-22

- Testing
 - 40% RAP specimens made on site
 - 30% and 40% RAP reheated specimens
 - Cores
Dynamic Modulus

![Graph showing the relationship between Reduced Frequency (Hz) and Modulus (psi) with various RAP reheat and cores configurations.](image-url)
Continued Testing

- Mix Testing
 - Cracking - Texas Overlay Test
 - Rutting – APA Rut Tester
 - Fatigue – Beam Fatigue

- Cores
 - Permeability
 - Dynamic modulus
 - Extraction and recovery
 - Binder grading

- Performance predictions with AASHTO Pavement ME
- Performance monitoring of pavements
Moving Forward

• Additional trial experiences
 – Need variety of contractors/projects

• Continued performance testing and in-service performance evaluation

• Investigation of mix design process and mix acceptance criteria
Thank You!

Acknowledgements
Co-PIs: Hari Nair & Ben Bowers
Branscome, Inc.; Colony Construction, Inc.;
Superior Paving Corp.

For further info:
stacey.diefenderfer@vdot.virginia.gov